
WRITTEN	 BY	 JOEL	 YONTS	 ©	 2011	
	

	

	

	

	

	

Malicious
Streams

	 Mac	 OS	 X	 Startup	
The	 world	 according	 to	 launchd	

MAC	 OS	 X	 STARTUP:	 THE	 WORLD	 ACCORDING	 TO	 LAUNCHD	

	
	

	

	 	 Joel	 Yonts	 /	 Malicious	 Streams
	

2	

 The need to persist tools and infections between
reboots is critical for the cyber criminal. In the
Microsoft Windows world, we have an established body
of knowledge and tools for determining programs set to
launch at startup. This same level of maturity does not
exist for the Mac OS X platform. Even though details of
OS X’s startup systems have been widely published,

there is a lack of dissemination of this information within the Forensics
community. Further, there exists a gap in open source tools to aid in the
compilation of OS X startup items. The intent of this article is to explore the
startup mechanisms of OS X and to introduce a basic tool to help with the
examination of Mac OS X systems.

Examining OS X startup in detail reveals a tale of two worlds. The first
shows the *NIX roots of the OS that makes use of
traditional startup files such as those found in
Table 1. These files could be leveraged to start
nearly any process, but in practice is mainly used
to set up the system and user's environment
variables and shell configuration.

The second world brings the OS X specific touch with the
implementation of the launchd daemon (/sbin/launchd - OSX 10.4+). The
launchd daemon is responsible for starting and stopping most of the OS X
specific processes. The list of processes to be started by this daemon, along
with their initial configuration, is scattered across hundreds of XML based
Property Lists (plist) files.

These files are housed in multiple system and user directories (Table 2).

/etc/rc.*
/etc/profile
/etc/bashrc

~/.bashrc
~/.profile
~/.login

Table	 1:	 Traditional	 *NIX	 Startup	 Files	

/System/Library/LaunchDaemons/*
/System/Library/LaunchAgents/*

/Library/LaunchDaemons/*
/Library/LaunchAgents/*
/Library/StartupItems/*

/Library/Preferences/com.apple.loginwindow.plist
~/Library/LaunchAgents/*

~/Library/Preferences/loginwindow.plist

Table	 2:	 Directories	 &	 Paths	 Used	 by	 the	 Launchd	 Daemon	

MAC	 OS	 X	 STARTUP:	 THE	 WORLD	 ACCORDING	 TO	 LAUNCHD	

	
	

	

	 	 Joel	 Yonts	 /	 Malicious	 Streams
	

3	

These plists utilize a hierarchal (XML1) structure to house named-valued
pairs to store configuration data. OS X uses plist files much like MS Windows
uses the Registry to store configuration data. The primary difference is the
configuration data is not centrally stored in hives but rather distributed across
many text (or less commonly in binary) files located in various directories
throughout the filesystem. Locating the correct plist used for a particular
configuration can be a challenge but luckily those used by launchd are
corralled into a small subset of system and user directories,
Table 2. Many tools exist to view these files with one
popular option being Apple's Property List Editor. This tool
provides an easy to use interface, Figure 1, for viewing &
modifying both text based and binary plist files. Property
List Editor is delivered as part of Apple's free Xcode
Developer suite. Alternate tools for viewing plists include
XML editors, WWW browsers, and text editors.

	
Figure	 1:	 Property	 List	 Editor	 Modifying	 a	 Startup	 Plist

The majority of launchd plists utilize a structure that specifies one
startup executable per plist file. The specification of the startup executable is
accomplished by a combination of the Program and ProgramArguments fields
within the plist. As shown in Figure 1, the Program field specifies the full path
to the executable and ProgramArguments specifies the command line
arguments passed to the executable. An alternate approach employed by some
launchd plists is to exclude the Program field and specify the fullpath to the
executable as argument 0 of the ProgramArguments field, Figure 2.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Some	 older	 plist	 files	 use	 a	 raw	 text	 format	 rather	 than	 the	 XML	 standard	

MAC	 OS	 X	 STARTUP:	 THE	 WORLD	 ACCORDING	 TO	 LAUNCHD	

	
	

	

	 	 Joel	 Yonts	 /	 Malicious	 Streams
	

4	

	
Figure	 2:	 Alternate	 plist	 format	 -‐	 Executable	 Path	 Passed	 as	 ProgramArguement	 :	 Item	 0

Finally, a specialty plist named loginwindow.plist (see Table 2 for full path)
specifies items that are set to launch at user login. This plist serves as the
backend data store for the graphical Login Items tab included in the Accounts
section of the Systems Preferences, Figure 3.

	
Figure	 3:	 Login	 Items	 Section	 of	 System	 Preferences:	 Accounts

The format of loginwindow.plist deviates from the plist files described earlier.
This file uses a root node field called AutoLaunchedApplicationDictionary with a
number of Item # child nodes. Each child node specifies the full path of an
executable and the visibility of the running application. Figure 4 shows the layout
of a loginwindow.plist that supports the configuration shown in figure 3.

MAC	 OS	 X	 STARTUP:	 THE	 WORLD	 ACCORDING	 TO	 LAUNCHD	

	
	

	

	 	 Joel	 Yonts	 /	 Malicious	 Streams
	

5	

	
Figure	 4:	 loginwindow.plist	 structure	

AUTOMATED ANALYSIS

While examining each plist file manually is an achievable task, it can
become very time consuming when multiplied by the hundreds of files involved
in OS X startup. osxautoruns.py is a new open source, python-based tool that
automates this task. osxautoruns.py locates all plist files specified by the
filestructure outlined in Table 2 and extracts relevant startup
information. The tool also supports various output formats and the ability to
analyze the current system (live analysis) or a mounted image. Figure 5 shows
basic syntax and Figure 6 provides a snippet of sample output. Additional
details and options are documented in the README.txt file included within
application download bundle.

MAC	 OS	 X	 STARTUP:	 THE	 WORLD	 ACCORDING	 TO	 LAUNCHD	

	
	

	

	 	 Joel	 Yonts	 /	 Malicious	 Streams
	

6	

	
Figure	 5:	 osxautoruns.py	 Usage	 Information

	
Figure	 6:	 osxautoruns.py	 Example	 Output

CAUTION: This utility does NOT examine the traditional *NIX startup files rc.*,
profile, bashrc, etc. that exist on Mac OS X systems. This tool simply
automates the parsing of the plists outlined above and extracts Program &
ProgramArguements fields. The output of this tool should not be considered a
complete listing of all potential startup items.

MAC	 OS	 X	 STARTUP:	 THE	 WORLD	 ACCORDING	 TO	 LAUNCHD	

	
	

	

	 	 Joel	 Yonts	 /	 Malicious	 Streams
	

7	

ADDITIONAL INFORMATION & REFERENCES

There are many sources of additional information available. Below are a few
of those sources that were used in the development of this paper.

osxautoruns.py
Malicious Streams: Downloads
http://www.malicious-streams.com/Downloads/Downloads.html

launchd
Wikipedia
http://en.wikipedia.org/wiki/Launchd - Property_list

Creating launchd Daemons and Agents
Mac OS X Reference Library, Apple Inc.
http://developer.apple.com/library/mac/ -
documentation/MacOSX/Conceptual/BPSystemStartup/Articles/LaunchOnDemandDaemons.html

Mac OS X System Startup
Mac OS X Internals, Amit Singh
http://osxbook.com/book/bonus/ancient/whatismacosx//arch_startup.html

